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A ‘co-templating’ strategy supported by molecular modelling

has been used to prepare, for the first time, silicoaluminopho-

sphates with the SAV and KFI framework topologies, each of

which has a three-dimensionally connected pore system with

high specific volume.

Although structure direction by organic ‘templates’ is an essential

route to the preparation of many zeolites, it remains a challenge to

choose a template for a desired topology. To our knowledge, there

are no examples where a novel framework type has been

synthesised using an organic molecule chosen specifically for that

purpose. The approach of Lewis et al.1 to build a molecule

computationally within the pores of a zeolite is attractive, but until

now has only succeeded in designing new templates for existing

aluminophosphate frameworks. The method is most promising for

application to structures containing pores where the space to be

occupied by the organic molecule is well-defined. For this reason,

the synthesis of cage structures with novel compositions, or

structures where these would not be expected by simple modifi-

cations of known preparations, appears to be a designed synthesis

goal that is both worthwhile and achievable.

It has been observed by ourselves and others that azamacro-

cycles are highly effective structure-directing agents (SDAs) for the

synthesis of aluminophosphate-based structures that contain

cages.2,3 In particular, tetramethylcyclam directs the crystallisation

of substituted aluminophosphates with the STA-6 (framework

type SAS) and STA-7 (SAV) structures (Fig. 1). The crystallising

phase is STA-6 for silicoaluminophosphate (SAPO) and metallo-

aluminophosphates (MAPO, M(II) = Mg, Fe, Mn), and STA-7 for

CoAPO and ZnAPO compositions. Of the two framework types,

SAV is favoured for applications in adsorption and catalysis

because it has a three-dimensionally connected pore space via

openings limited by rings containing eight tetrahedral cations

(8-membered rings, 8MRs). It is also desirable to prepare it as a

SAPO (rather than as a CoAPO or ZnAPO) because SAPOs are

usually more stable once calcined and contain well-defined

Brønsted acid sites. Indeed, SAPO-34 (CHA) and SAPO-18

(AEI), which have structures closely related to that of STA-7, are

active and selective catalysts for the methanol-to-olefins reaction:4,5

CHA, AEI and SAV structure types are all composed of double

6-membered rings (D6Rs) attached differently by 4MRs.

SAPO STA-7 is therefore an attractive target for synthesis. Its

structure differs from that of STA-6 due to it possessing two types

of cage rather than one. The templating activity of tetramethylcy-

clam in CoAPO STA-7 occurs via inclusion within the larger of the

two cages; modelling indicates that it cannot fit into the smaller

cage.2 A second organic base that would fit closely into the smaller

cage should therefore favour crystallisation of the SAPO STA-7

structure. Remarkably, addition of tetraethylammonium cations

(TEA+) directs the crystallisation to pure STA-7 rather than

STA-6; the co-base also reduces the amount of macrocycle needed

for pH control.{ Furthermore, together with TEA+, cyclam itself

directs the formation of STA-7. To investigate the role of co-bases

further, two other examples, selected on the basis of size, di-

n-propylamine (DPA) and diisopropylamine (DIPA), were added

to SAPO syntheses containing cyclam or tetramethylcyclam as the

primary SDA. In each case, the product was mainly STA-6 with

minor admixed STA-7 (estimated visually to be 10–20%). The

cyclam/TEA+ combination is therefore best for the synthesis of

SAPO STA-7 in terms of cost and purity, and this combination

can be used to prepare silicoaluminophosphates with Si/(Al +

Si + P) values from 0.04 to 0.20. Solid state NMR and CHN

elemental analysis indicate that cyclam and TEA+ are included

intact, and SAPO STA-7 samples prepared in this way give a 29Si

MASNMR resonance at 291.6 ppm, indicating that silicon is

included into the framework by replacing phosphorus. For a

sample with a Si/(Al + Si + P) value of 0.11, elemental and TGA

analysis gave a unit cell composition of (NC8H20)1.8-

(N4C10H26)1.8(H2O)11[Al24P18.5Si5.5O96]. Single crystal diffraction6
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Fig. 1 The structures of STA-6 (left) and STA-7 (right) both contain

cages: STA-6 has only one type, whereas STA-7 has two different types, A

and B (aluminum atoms are gray, phosphorus black and oxygen white).
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of cyclam/TEA+ SAPO STA-7 showed that the TEA+ cations

adopt the tg.tg configuration within the smaller cages (Fig. 2), but

it was not possible to locate the cyclam precisely, although electron

density found within a disk in the larger cage could be attributed to

disordered cyclam molecules.

Calcination gives crystalline SAPO STA-7 with a pore volume

of 0.29 cm3 g21. Rietveld refinement of the STA-7 framework

(Al–O 1.74(2) s, (Si,P)–O 1.54(2) s) gives a good fit to the data

(P4/n, a = 18.6931(7) s, c = 9.4191(5) s, Rwp = 7.8%, Rp = 5.4%).

The properties of SAPO STA-7 as an adsorbent and a catalyst will

be described elsewhere.

The experimental results demonstrate that the addition of TEA

ions directs the synthesis towards SAPO STA-7. By modelling

their lowest energy configurations in the smaller cage of the STA-7

structure, using a combined Monte Carlo-Simulated Annealing

approach,7 some idea of the role of TEA+ can be obtained. While

the large cage is occupied by cyclam, the binding energies of DPA,

DIPA and TEA+ in the smaller cage are found to be 283.6,

2124.9 and 2125.6 kJ mol21, respectively. The modelled position

of TEA+ is close to the position measured experimentally, but that

of the DPA protrudes from the smaller cage, where it interferes

with the templating effect of the cyclam. The higher selectivity of

TEA+ to STA-7 compared to DIPA is attributed to the better fit

to the symmetry of the cage.

Having prepared the SAPO form of STA-7 for the first time by

using a co-templating strategy, the approach was developed in

attempts to synthesise, as an aluminophosphate, a structure type

that had not previously been prepared as an AlPO4-based solid,

but which had been observed as an aluminosilicate zeolite: ZK-5

(framework type KFI)—one of the first synthetic zeolites to be

discovered.8 Like the SAV (and also CHA and AEI) framework

types, KFI is built up from D6Rs only, but with a different

stacking arrangement (Fig. 3). Furthermore, the (001) surface of

the SAV structure is topologically identical to the S100T surfaces

of KFI. It was therefore thought likely that an AlPO4-based KFI

structure could be prepared under similar gel compositions to

those that give the substituted (MAPO, SAPO) versions of

AlPO4-18 and -34, and STA-7, if suitable structure directing agents

could be found.

The ZK-5 structure, like that of STA-7, has two types of cages.

In ZK-5, these are the so-called a-cage (also found in the structure

of zeolite A and the isostructural AlPO4-42 (LTA)) and a smaller

cage found in the structure of zeolite merlinoite (MER). Previous

studies have shown that the azaoxacryptand 4,7,13,16,21,24-

hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (K222) is a good

template for AlPO4-42 and its substituted derivatives,3 and must

reside in the a-cage.

Using the co-templating approach, a selection of readily avail-

able amines and alkylammonium cations were screened compu-

tationally for their fit within the MER cages of a theoretical AlPO4

composition of the KFI structure type: tetramethylammonium

(TMA+), TEA and tetrapropylammonium (TPA+) cations and the

amines methylamine (MA), ethylamine (EA), propylamine (PA),

dimethylamine (DMA), diethylamine (DEA), DPA, DIPA,

triethylamine (TREA) and diisopropylethylamine (DIPEA)).10

The non-bonding energies are given in Fig. 4. The most favorable

(2177.8 kJ mol21) was observed for TEA+ in the tt.tt con-

figuration (Fig. 4), but a number of the potential SDAs gave

favorable energies. To examine the usefulness of this modelling

approach, TEA+ was examined as a potential co-template with

K222 in syntheses from a magnesioaluminophosphate gel of

composition: x R : 0.108 K222 : 0.2 Mg(OAc)2 : 0.8 Al(OH)3 :

H3PO4 : 40 H2O, where R refers to the co-base. MgAPO

preparations are known to crystallise rapidly and give highly

crystalline solids. Remarkably, powder diffraction showed that the

phase pure product had the desired KFI structure type. 13C

MASNMR of as-prepared MgAPO (KFI) indicated that both

TEA and K222 were present. To test the co-template selectivity,

Fig. 2 The measured configuration of TEA ions in the smaller cages of

STA-7, as determined from SXRD. One of two symmetry-related

configurations is shown. Hydrogen atoms are omitted for clarity.

Fig. 3 Above: The structures SAV (left) and KFI (right), both made up

entirely of D6Rs (in blue), can be distinguished when viewed along the

a-axis. In SAV, layers are stacked along the c-axis by a simple translation,

whereas in KFI adjacent layers are related by a mirror plane perpendicular

to the c-axis. Below: The KFI structure, with oxygen atoms omitted, and

with a- and MER cages outlined in red and cyan, respectively.
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TMA+, TEA+ and TPA+, and the amines DPA, DIPA, TEA and

DIPEA, were also tried as co-templates with K222 under similar

conditions. All except TMA+ gave MgAPOs with the LTA

structure type; TMA+ favours the formation of MgAPO-20

(SOD).

The KFI framework structure of MgAPO (K222/TEA+)

was confirmed by single crystal diffraction9 and the TEA+

cation located within the MER cages in the configuration

predicted by modelling. It was not possible to locate the K222

cryptand due to disorder. Combining TGA and chemical analysis,

and assuming full occupancy of the MER cages by TEA+, gave a

unit cell composition of (NC8H20)6(N2C18O6H38)(NH4)2(H2O)40-

[Mg10Al38P48O192]. Using the K222/TEA+ combination,

CoAPO(KFI) and SAPO(KFI) compositional variants were also

obtained. These new solids are designated STA-14 materials

(St. Andrews material 14). SAPO STA-14 (Si/(Al + Si + P) = 0.1)

is of particular interest because it is stable to template removal,

giving a solid with a pore volume of 0.31 cm3 g21. Structural

refinement of the calcined form in Pn-3n gave an acceptable fit to

the powder XRD data.

These two rational syntheses indicate that a co-templating

approach is viable for structures containing more than one cage

type, where at least one of the organic additives has been observed

to function as an SDA for one of the cages. Many such structures

are known, either as hypothetical nets11 or in a limited composi-

tional range (as phosphates but not silicates, for example). These

offer attractive targets for synthesis by careful choice of available

templates.
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Fig. 4 Above: A histogram of the non-bonding energies of potential co-

templates for the MER cages of the AlPO4-KFI structure indicates that

tetraethylammonium ions have most negative energies. Below: The

modelled position of the TEA+ cations within the MER cages of the

AlPO4-KFI structure (left) and that observed experimentally (right). In

the latter, one of two symmetry-related positions is shown.
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